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Abstract. A phenomenological model is proposed for the magnetoelastic behaviour at low fields 
for an amorphous ribbon that has been field annealed in the ribbon plane at an arbitrary angle 
to the sample axis. The model takes into account the anisotropy energy, the Zeeman energy, 
the domain coupling energy, the shape energy'and me effects of the pinned wall and charged 
wall. Explicit expressions for the initial susceptibility and quadntic coefficients af engineering 
magnetostAction are obtained. 

1. Introduction 

Some amorphous ribbons present large values of the magnetomechanical coupling coefficient 
and the properties of soft magnetic material. That is why they are used in the production of 
sensors and transducers. For devices working in low magnetic fields, it is useful to model 
their magnetic and magnetoelastic behaviour depending on such parameters as applied stress 
and field-annealing angle. 

The dependence of the initial susceptibility on the applied stress and the field-annealing 
angle has been analysed considering only the rotation process [1,.2] or both rotation and 
displacement processes 131. These models describe correctly the dependence of the initial 
susceptibility x on the direction of the easy axis of the magnetization for the special cases 
of transverse or longitudinal anisotropy. 

The model proposed in [4] for the isotropic material starts from the concept of 
pseudodomains with pinned walls and takes into account the interdomain coupling 
interaction. The domain coupling energy explicitly depends on the strains; this leads to 
an expression for the magnetostriction differing from that used in [I-31. 

The field-annealed amorphous ribbons are characterized by a well~defined easy axis and 
a small constant of intrinsic anisotropy. 

The model suggested by Squire [3] starts from the domain pattern of the field-annealed 
amorphous ribbons and takes into account the effects of intrinsic anisotropy, magnetoelastic 
anisotropy, wall displacement and applied field. 

In the present work a phenomenological model is proposed to describe the low-field 
behaviour of field-annealed amorphous ribbons. The model starts from the Squire [3] model 
and, also includes the effects of shape, interdomain coupling interactions (because of the 
change in direction. inside the domain, the divergence of the vector of local magnetization is 
non-zero and hence magnetostatic interactions'will be present) and magneiostatic interactions 
due to the magnetically charged walls (if the component of the domain magnetization MO 
normal to the wall is not continuous, charges appear on the wall surface). 

The expressions for the initial susceptibility x ,  and the quadratic coefficients of 
engineering magnetostriction cq and CQ are obtained, starting from the free energy. 
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2. Theory 

2.1. Domain coupling energy 

Let us consider a sample field annealed in the ribbon plane at an angle €0 to the sample 
axis. Under the influence of a magnetic field parallel to the sample axis, the magnetization 
vectors Mu, and M D ~  from two joining domains will form the angles 81 and 8, with the 
ribbon axis and the wall will displace and rotate, forming an angle y (figure 1). In the 
case of the pinned wall, y = E .  The volume fraction where the domain magnetization MU! 
makes the angle 81 wit1 become U > 0.5. 

I Cioboraru and N Rezlescu 

Domoin Wall 
/ I  

t- 
MD2 

Figure 1. Domain pattern 

Owing to the chemical and topological disorder, the local anisotropy tensor shows 
spatial fluctuations. The direction of the magnetic moment is determined by the balance 
between the local anisotropy and exchange interactions [5]. This results in an average 
local domain magnetization MD over which a moment direction distribution is superposed. 
In the field-annealed ribbons, the technical saturation MU (for H N 102-103 A m-I) is 
lower than the saturation magnetization MS (for H 2: 105 A m-]) [2]. Thus, for the 
whole technical magnetization region, there are spatial fluctuations in the magnetic moment 
direction. Because of the change in direction (inside the domain), the divergence of the 
vector of local magnetization is non-zero and hence magnetostatic interactions will be 
present (owing to the density of the volume pole) between the joining areas of the sample 
[6] .  During the magnetization process, a change in the magnetic moment directions occurs, 
accompanied by a variation in the volume magnetostatic energy density Ev. For small 
values of the reduced magnetization m, one can suppose that 

(1) 2 Ev = am 

where a is a parameter depending on the sample history. Taking into account the expression 
for the longitudinal ml and transverse mt components of the reduced magnetization given 
by 

ml = u cosO1 + (1 - u)cos02 

mt = u sine1 + (1 - v)sin& 
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one obtains 

1 - 4u(l  - u )  sin' (3) 

This expression was used in [7,8] to describe the dependence of x ( U )  for the special cases 
EO = 0 and EO = ~ / 2 .  

For high fields, the fluctuations diminish and the domain coupling energy decreases. 

2.2. Anisotropy 

Since the considered energy of magnetic domain coup1,ing (section 2.1) is of magnetostatic 
origin (it does not depend on the deformation components, unlike the case treated in [4]), 
the equilibrium strains correspond to the minimum of the sum between the elastic and 
magnetoelastic energies (with respect to the strains): 

When a longitudinal stress U is applied, the anisotropy energy consists of two parts [3]: 
one due to the intrinsic anisotropy given by 

EX" = KO[U sin2(eo - 01)~+ ( I  - U) sin2(Eo -SI)] 

and the other due to the external stress given by 

E K ,  = K , , [ I J S ~ ~ ~ ~ ~  + ( I  -u)sinZ821. 

The magnetoelastic anisotropy constant K,, is 

Kn = ;h,u 

where is is the saturation magnetostriction. The resultant anisotropy energy may be put 
into the form 

(4) E K - E K ~ + E K ,  3 K [ u s i n 2 ( ~ - 0 ~ ) + ( 1  -u)sin2(e-0~)]+ 

The resultant anisotropy constant K and the new direction of the easy axis E are given by 

KO + K.z - K 
2 

K = JK; + K,2 + 2K0K0 cos(2~0) 

KO sin(2co) 
tan(2E) = 

KO COS(~EO) + K, ' 
We note that the term (KO + K, - K)/2 does not depend on the domain wall position and 
the domain magnetization direction. 

2.3. Shape magnetostatic energy 

Let us consider an amorphous ribbon with the €allowing dimensions: thickness 2d N 

20 x m; width 2b Y 2 x lo? m; length 1 >> b. Using the expression for the point 
function demagnetization factors (for a rectangular prism) given in [9], we find the volume 
average of the transverse demagnetization factor Nt and longitudinal demagnetization factor 
NI. 

N~ Y s x 10-3 

NI << Ni. 
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The shape magnetostatic energy will be 

Es = q m ,  
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where 

(7) 

From equation (7) and ~ M D  = 1.5 T it is found that cut 2: lo4 J n r 3 .  Since 
KO N 10' J m-3, it follows that at >> KO. Thus, owing to the shape effect, the transverse 
component of the technical magnetization will be zero. 

A complication is the possibility that the direction of domain magnetization near the 
sample surface is changed by the surface free poles [IO]. Because the ratio o€ the domain 
width to the sample thickness is greater than unity, the scalar potential 4 is a three-variable 
function. Thus, it is more complicated than the p* corre'ction given in [lo] (where 4 is a 
two-variable function). 

(Y, = i ~ o ~ l ~ ; .  1 

Fiyre 2. One-dimensional domain partem. 

2.4. Energy resulting from the magnetic poles on the walls 

During the magnetization, the rotation of the domain magnetizations MDI and M D ~  from 
the domains joining the wall (figure 2) occurs, as well as the displacement of this wall. Let 
OQ1 and BQ2 be the angles between the normal n to the wall, and Mol and Mm. respectively. 
If the component of MD normal to the wall is not continuous, charges appear on the wall 
surface, resulting in an increase in the magnetostatic energy. In order to evaluate this energy 
we shall use the general relation for the magnetostatic energy associated with the volume 
charges [ll]. Choosing a coordinate system xOy so that Oxlln and Oy is parallel to the 
wall (figure 2). then 

M," is the x component of the Fourier coefficient Mn, and 2L is the spatial period of the 
one-dimensional domain structure. The x component of the magnetization is 
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Mx(x, y) can also be written as 

(10) 
From equation (IO) it follows that 

Taking into account equations (8) and (1 l), one obtains 

(12) 
In the case of amorphous ribbons that have been field annealed, the domain width is 
2 L  2: 200 x m. For d/L Y 0.1 and U - f << 1, one obtains 

(13) E,, =c~-MD(cosBP~ PO 2 - c ~ s $ z ) ~ [ l  - C Z ( I J -  f)’] 
2 

where CI = 0.05 , cz = 1.4. Thus 

The material parameter 
PLO 
2 

Em,  = @,(CoS8pi - C O S ~ ~ Z ) ~ [ ~  - &(U - +)*I. 

cfW = -c1 Mk Y 104J/m-3 
~ 

is large compared with the value of the anisotropy constant. As the result of this interaction 
the magnetization process will occur so that the component of MD normal to the wall is 
continuous. 

2.5. The free-energy density; equilibrium conditions 

The free-energy density F is 
F = EK t Ez+ Ev+ Ev + + E,, + E,  

where EK and EZ are the densities of the anisotropy energy (equation (4)) and Zeeman 
energy, respectively [3j: 

E K  = K [ u  sin2(81 - E )  + (1 - U) sin2(& - E ) ]  (17) 

E~ = - P ~ M ~ H I V  COS 81 + (I - U) COS e,]. (18) 
Ev and ES are given by equations ( I )  and (6). In order to express’E,, in term of el and 
82 and the wall direction y (figure I) ,  we shall use the relations 

(19) 
$ 1  = 81 - (y  - ~ / 2 )  

e,, = e2 - ( y  - ~ 1 2 ) .  

E,, =~w,[sin(e1 - y )  - sin(82 - y ) l Z [ 1  - C ~ ( U  - $1’1. 

E ,  = 4 8 f i ( v  - 4)’ 

~ ~ 

From (14) and (19) it follows that 

(20) 

(21) 

To calculate the interesting parameters, it is necessary to expand the solutions to order 

~ 

E, is the energy increase of the pinned wall during its bending: ~ 

8 being a material parameter; i3 = (3L/d2)& [12], where A is the exchange constant. 

HZ. We shall analyse two cases. 
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(a) Pinned wall (p  # 0 and y = E). In this case, the wall will not rotate and the balance 
equations ate 

The solutions will have the form 

81 = 6 + a l H + b 1 H 2  

02 = z + E  + a2H + b2H2 
v=5+a3H+b3H2.  1 

The coefficients of the expansion (23) ire 

a1 = -a2 

and 

bi = b2 

&Mi sin 6 cos E 1 
2 2(K  + 4f fd  

bz = 

(25) 
B J I ~ ; ( K + u + ( Y ~ ) ( B ~ / ~ T + ~ + u ~ )  

X 
~ ( ~ + a ) ( a + ~ ~ ) + a , ( ~ s i n ~ ~ + a + p J i r ~ o s * ~ ) ~  

b, = O .  

Considering the conditions ar and a; > KO, it is found that 

a,  =a2 

g 0 M ~ s i n ~  
a2 = 

2(K sinz Q + cos2 E 5 a)  
cos E 

a3 = a2- 
sin E 

and 

bi = b2 = b3 = 0. (27) 

In this case, the vectors Mol and MDZ will rotate so that the b i s e c ~ x  of the angle between 
the two vectors is normal to the pinned wall. 

(b) Unpinned wall (p  = 0 and y # E ) .  In this case, the wall may rotate and the balance 
equations are 

aF a F  aF aF - = - = _ = _ -  - -0 .  ael aa av ay 
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The solutions have the form 
01 = 6 + a ; H + b j H Z  

el = II + E +a;H + b;H2 

v = 4 + a;H + b;HZ 

y = E  +aiH +b$H2. 
The coefficients ai = ai (i = 1,2,3 ), a; = ~ O  and bl = 0 (i = 1,2,3,4). Therefore, for the 
two cases the coefficients of H are given by equation (26), the coefficients of HZ are zero 
and y = E (the wall does not rotate). This is a consequence of both the magnetic domain 
coupling interaction and the shape effect. If 01 = mc = 0 and a, >> KO , the vectors MDI 
andMD2 wil l rotatesothata~+az#Oandbl+bz#O. Thus, y = E + ( ~ , + ~ ~ - I I ) / ~ # E .  

2.6. The initial susceptibility 
The initial susceptibility can be calculated starting from the expression for m, (equation (2)): 

x = az sin E + 2a3 cos~c. 
Taking into account the relations (26), one gets 

where K and E depend on K,, and eo (see equation (5)). In figure 3 the dependence of the 
susceptibility on the magnetoelastic energy for various anneal angles c0 is presented. For 
the special cases EO = 0 and EO = z/2, a sharp peak appears. This happens for K 2: 0 when, 
under the influence of the applied stress, a rotation of the easy axis of magnetization takes 
place. The susceptibility still has a finite value owing to the magnetostatic interactions. 

Equation (31) describes both correlations of the type x cx K;' for high negative values 
of K,, and of the type x cx K;'" for high positive values of KO (pinned wall). This 
behaviour agrees with the experimental data reported in [13,14]. 

For unpinned wall and transverse initial anisotropy the inverse susceptibility versus 
longitudinal stress (from equation (5) ind (311) is 

and 

which shows a plateau for K,  > KO. This behaviour was observed in Metglas 2605SC 
12,71. 

In the case of the unstressed sample, the dependence of the normalized susceptibility 
on the field-annealing angle €0 is 

(34) 
1 -- -~ x (0, €0) 

x(0,O) 1+(c -1 ) s in2~o  
where 

Equation (34) is different from the dependence given in [3] but agrees with the experimental 
data presented in [5] for VAC0040 (figure 4). The dependence given by equation (34) reflects 
the sample shape effect (at >> KO). 
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Figurc 3. Normalized susceptibility at low fields against mgnetoelastic anisotropy for various 
anneal angles. The valltes of the material parameters are KO = 100 J m-3, II = 25 J m-) and 
@ = 2N'I2 m-'. 

Figure 4. Normalized susceptibility at low fields against anneal: -, curve 1, proposed model 
(equation (34)); -, C U N ~  2, Squire's [3] model; 0, experimental data [5] for VACOO40; +, 
experimental data [SI for Metglas 260552. 

2.7. Quadratic coeficients of engineering magnetostriction 

The engineering magnetostriction A, is defined as the average axial strain of the sample [31: 
~ ~ 

he= ; A , [ U C O S ~ ~ ,  + ~ ~ - v ) c o s ~ B ~ - c o s ~ E ] .  

For low fields (taking into account equation (U)) one obtains 
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Figure 5. Normalized intrinsic quadratic coefficient against anneal angle: -, c w e  1, 
proposed model (equation (38)): -, curve 2. Squire's [31 model; 0, experimental data [51 
for VACOWO: +, experimental data [SI for Metglas 260582. 

Thus, at low applied fields H ,  or low levels of technical magnetization M ,  the 
magnetostrictive strain A, is  given^ by 

A, C( H~ C( M ~ .  

The response can be parametrized by the quadratic coefficients cq and CQ 

A, = cqH2 

A, = cQM'. 

The constants cq and CQ of proponionality in the above expression are called the quadratic 
coefjicient of magnetostriction (or quadratic coefjicient) and intrinsic quadratic coefjicient, 
respectively [3]. Taking into account equations (26). (27) and (36), one obtains 

The dependences E(K, ,  EO) and K(K,, eo) are given by equation (2). Figure 5 presents 
the dependence of the normalized intrinsic quadratic coefficient on the easy axis direction- 
given by equation (38), the dependence given by Squire's [3] model and the experimental 
data presented in 151. The proposed model agrees with the experimental data for VACOO40. 
The dependence CQ(O, E O )  reflects the shape effect and the magnetostatic interaction due to 
the magnetically charged wall for a pinned wall (cyw >> KO). The magnetoelastic anisotropy 
dependence of the intrinsic quadratic coefficient CQ(K,), for various anneal angles, is 
present in figure 6 (equation (38)). The maximum values are obtained for resulting transverse 
anisotropy ( E  = ~ 1 2 ) .  The discontinuities for EO = 0 and 60 = r j2  are consequences of 
the sudden changes in the easy axis direction for K, = -KO and KO = KO, respectively. 
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Figure 6. The magnetoelastic anisotropy dependence of the normalized intrinsic quadratic 
coefficient for various "11 angles (equation (38)). 
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Figure 7. The magnetoelastic anisotropy dependence of the normalized quadratic coefficient for 
various anneal angles (equation (37)). 

Figure 7 presents the dependences of the quadratic coefficient cq(Ko) on the 
magnetoelastic anisotropy for various anneal angles (equation (37)). In the case €0 = n/2, 
the maximum value of cq was observed experimentally for K ,  = KO [15]. The proposed 
model gives a finite value in this case too. 

The dependence of the intrinsic quadratic coefficient on the field-annealing angle reflects 
the shape effect and the influence of the magnetostatic interaction due to the magnetically 
charged wall for a pinned wall. 

3. Conclusions 

An important part in the magnetic and magnetoelastic behaviour of the amorphous ribbons 
in weak magnetic field is played by the shape effect (the transverse demagnetizing field 
requires alignment of the technical magnetization along the sample) and the effect produced 
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by the magnetic charges on the wall surface. This interaction will result in the coupling 
between the wall direction and the magnetization directions within the joining domains, 
MDI and MDZ. The reorienhtion of MO, and M D ~  will occur so as to maintain the 
component normal to the wall. The energies due to the shape effect and poles on the walls 
are much greater than the intrinsic anisotropy energy. 

The ribbon shape effect is reflected in the dependence of the initial susceptibility on the 
direction of the easy axis. 

The dependences of the quadratic coefficients of engineering magnetostriction on 
the field-annealing angle reflect the shape effect and the influence of the magnetostatic 
interaction due to the magnetically charged wall for pinned wall. 

When the resulting anisotropy vanishes, the magnetic domain coupling interaction 
opposes the tendency of the adjacent domain magnetizations to align parallel to the applied 
field, which results in finite values of the susceptibility and quadratic coefficient in these 
cases too. 
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